The zirconium dioxide, or zirconia, lambda sensor is based on a solid-state electrochemical fuel cell called the Nernst cell. Its two electrodes provide an output voltage corresponding to the quantity of oxygen in the exhaust relative to that in the atmosphere. An output voltage of 0.2 V (200 mV) DC represents a "lean mixture" of fuel and oxygen, where the amount of oxygen entering the cylinder is sufficient to fully oxidize the carbon monoxide (CO), produced in burning the air and fuel, into carbon dioxide (CO2). An output voltage of 0.8 V (800 mV) DC represents a "rich mixture", one which is high in unburned fuel and low in remaining oxygen. The ideal setpoint is approximately 0.45 V (450 mV) DC. This is where the quantities of air and fuel are in the optimum ratio, which is ~0.5% lean of the stoichiometric point, such that the exhaust output contains minimal carbon monoxide.
The voltage produced by the sensor is nonlinear with respect to oxygen concentration. The sensor is most sensitive near the stoichiometric point and less sensitive when either very lean or very rich.
The engine control unit (ECU) is a control system that uses feedback from the sensor to adjust the fuel/air mixture. As in all control systems, the time constant of the sensor is important; the ability of the ECU to control the fuel-air-ratio depends upon the response time of the sensor. An aging or fouled sensor tends to have a slower response time, which can degrade system performance. The shorter the time period, the higher the so-called "cross count" [2] and the more responsive the system.
The zirconia sensor is of the "narrow band" type, referring to the narrow range of fuel/air ratios to which it responds.
Friday, January 8, 2010
Automotive applications
Automotive oxygen sensors, colloquially known as O2 sensors, make modern electronic fuel injection and emission control possible. They help determine, in real time, if the air fuel ratio of a combustion engine is rich or lean. Since oxygen sensors are located in the exhaust stream, they do not directly measure the air or the fuel entering the engine. But when information from oxygen sensors is coupled with information from other sources, it can be used to indirectly determine the air-to-fuel ratio. Closed-loop feedback-controlled fuel injection varies the fuel injector output according to real-time sensor data rather than operating with a predetermined (open-loop) fuel map. In addition to enabling electronic fuel injection to work efficiently, this emissions control technique can reduce the amounts of both unburnt fuel and oxides of nitrogen from entering the atmosphere. Unburnt fuel is pollution in the form of air-borne hydrocarbons, while oxides of nitrogen (NOx gases) are a result of combustion chamber tempuratures exceeding 1300 Kelvin due to excess air in the fuel mixture and contribute to smog and acid rain. Volvo was the first automobile manufacturer to employ this technology in the late 1970s, along with the 3-way catalyst used in the catalytic converter.
The sensor does not actually measure oxygen concentration, but rather the amount of oxygen needed to completely oxidize any remaining combustibles in the exhaust gas. Rich mixture causes an oxygen demand. This demand causes a voltage to build up, due to transportation of oxygen ions through the sensor layer. Lean mixture causes low voltage, since there is an oxygen excess.
Modern spark-ignited combustion engines use oxygen sensors and catalytic converters in order to reduce exhaust emissions. Information on oxygen concentration is sent to the engine management computer or ECU, which adjusts the amount of fuel injected into the engine to compensate for excess air or excess fuel. The ECU attempts to maintain, on average, a certain air-fuel ratio by interpreting the information it gains from the oxygen sensor. The primary goal is a compromise between power, fuel economy, and emissions, and in most cases is achieved by an air-fuel-ratio close to stoichiometric. For spark-ignition engines (such as those that burn gasoline, as opposed to diesel), the three types of emissions modern systems are concerned with are: hydrocarbons (which are released when the fuel is not burnt completely, such as when misfiring or running rich), carbon monoxide (which is the result of running slightly rich) and NOx (which dominate when the mixture is lean). Failure of these sensors, either through normal aging, the use of leaded fuels, or fuel contaminated with silicones or silicates, for example, can lead to damage of an automobile's catalytic converter and expensive repairs.
Tampering with or modifying the signal that the oxygen sensor sends to the engine computer can be detrimental to emissions control and can even damage the vehicle. When the engine is under low-load conditions (such as when accelerating very gently, or maintaining a constant speed), it is operating in "closed-loop mode." This refers to a feedback loop between the ECU and the oxygen sensor(s) in which the ECU adjusts the quantity of fuel and expects to see a resulting change in the response of the oxygen sensor. This loop forces the engine to operate both slightly lean and slightly rich on successive loops, as it attempts to maintain a mostly stoichiometric ratio on average. If modifications cause the engine to run moderately lean, there will be a slight increase in fuel economy, sometimes at the expense of increased NOx emissions, much higher exhaust gas temperatures, and sometimes a slight increase in power that can quickly turn into misfires and a drastic loss of power, as well as potential engine damage, at ultra-lean air-to-fuel ratios. If modifications cause the engine to run rich, then there will be a slight increase in power to a point (after which the engine starts flooding from too much unburned fuel), but at the cost of decreased fuel economy, and an increase in unburned hydrocarbons in the exhaust which causes overheating of the catalytic converter. Prolonged operation at rich mixtures can cause catastrophic failure of the catalytic converter (see backfire). The ECU also controls the spark engine timing along with the fuel injector pulse width, so modifications which alter the engine to operate either too lean or too rich may result in inefficient fuel consumption whenever fuel is ignited too soon or too late in the combustion cycle.
When an internal combustion engine is under high load (e.g. wide open throttle), the output of the oxygen sensor is ignored, and the ECU automatically enriches the mixture to protect the engine, as misfires under load are much more likely to cause damage. This is referred to an engine running in 'open-loop mode'. Any changes in the sensor output will be ignored in this state. In many cars (excepting some turbocharged ones), inputs from the air flow meter are also ignored, as they might otherwise lower engine performance due to the mixture being too rich or too lean, and increase the risk of engine damage due to detonation if the mixture is too lean.
The sensor does not actually measure oxygen concentration, but rather the amount of oxygen needed to completely oxidize any remaining combustibles in the exhaust gas. Rich mixture causes an oxygen demand. This demand causes a voltage to build up, due to transportation of oxygen ions through the sensor layer. Lean mixture causes low voltage, since there is an oxygen excess.
Modern spark-ignited combustion engines use oxygen sensors and catalytic converters in order to reduce exhaust emissions. Information on oxygen concentration is sent to the engine management computer or ECU, which adjusts the amount of fuel injected into the engine to compensate for excess air or excess fuel. The ECU attempts to maintain, on average, a certain air-fuel ratio by interpreting the information it gains from the oxygen sensor. The primary goal is a compromise between power, fuel economy, and emissions, and in most cases is achieved by an air-fuel-ratio close to stoichiometric. For spark-ignition engines (such as those that burn gasoline, as opposed to diesel), the three types of emissions modern systems are concerned with are: hydrocarbons (which are released when the fuel is not burnt completely, such as when misfiring or running rich), carbon monoxide (which is the result of running slightly rich) and NOx (which dominate when the mixture is lean). Failure of these sensors, either through normal aging, the use of leaded fuels, or fuel contaminated with silicones or silicates, for example, can lead to damage of an automobile's catalytic converter and expensive repairs.
Tampering with or modifying the signal that the oxygen sensor sends to the engine computer can be detrimental to emissions control and can even damage the vehicle. When the engine is under low-load conditions (such as when accelerating very gently, or maintaining a constant speed), it is operating in "closed-loop mode." This refers to a feedback loop between the ECU and the oxygen sensor(s) in which the ECU adjusts the quantity of fuel and expects to see a resulting change in the response of the oxygen sensor. This loop forces the engine to operate both slightly lean and slightly rich on successive loops, as it attempts to maintain a mostly stoichiometric ratio on average. If modifications cause the engine to run moderately lean, there will be a slight increase in fuel economy, sometimes at the expense of increased NOx emissions, much higher exhaust gas temperatures, and sometimes a slight increase in power that can quickly turn into misfires and a drastic loss of power, as well as potential engine damage, at ultra-lean air-to-fuel ratios. If modifications cause the engine to run rich, then there will be a slight increase in power to a point (after which the engine starts flooding from too much unburned fuel), but at the cost of decreased fuel economy, and an increase in unburned hydrocarbons in the exhaust which causes overheating of the catalytic converter. Prolonged operation at rich mixtures can cause catastrophic failure of the catalytic converter (see backfire). The ECU also controls the spark engine timing along with the fuel injector pulse width, so modifications which alter the engine to operate either too lean or too rich may result in inefficient fuel consumption whenever fuel is ignited too soon or too late in the combustion cycle.
When an internal combustion engine is under high load (e.g. wide open throttle), the output of the oxygen sensor is ignored, and the ECU automatically enriches the mixture to protect the engine, as misfires under load are much more likely to cause damage. This is referred to an engine running in 'open-loop mode'. Any changes in the sensor output will be ignored in this state. In many cars (excepting some turbocharged ones), inputs from the air flow meter are also ignored, as they might otherwise lower engine performance due to the mixture being too rich or too lean, and increase the risk of engine damage due to detonation if the mixture is too lean.
Oxygen sensor
An oxygen sensor, or lambda sensor, is an electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analyzed. It was developed by Robert Bosch GmbH during the late 1960s under supervision by Dr. Günter Bauman. The original sensing element is made with a thimble-shaped zirconia ceramic coated on both the exhaust and reference sides with a thin layer of platinum and comes in both heated and unheated forms. The planar-style sensor entered the market in 1998 (also pioneered by Robert Bosch GmbH) and significantly reduced the mass of the ceramic sensing element as well as incorporating the heater within the ceramic structure. This resulted in a sensor that both started operating sooner and responded faster. The most common application is to measure the exhaust gas concentration of oxygen for internal combustion engines in automobiles and other vehicles. Divers also use a similar device to measure the partial pressure of oxygen in their breathing gas.
Scientists use oxygen sensors to measure respiration or production of oxygen and use a different approach. Oxygen sensors are used in oxygen analyzers which find a lot of use in medical applications such as anesthesia monitors, respirators and oxygen concentrators.
There are many different ways of measuring oxygen and these include technologies such as zirconia, electrochemical (also known as Galvanic), infrared, ultrasonic and very recently laser. Each method has its own advantages and disadvantages.
Scientists use oxygen sensors to measure respiration or production of oxygen and use a different approach. Oxygen sensors are used in oxygen analyzers which find a lot of use in medical applications such as anesthesia monitors, respirators and oxygen concentrators.
There are many different ways of measuring oxygen and these include technologies such as zirconia, electrochemical (also known as Galvanic), infrared, ultrasonic and very recently laser. Each method has its own advantages and disadvantages.
Subscribe to:
Posts (Atom)